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 Asymptotic Analysis 

Outline: 
we will look at: 

– Justification for analysis 
– Quadratic and polynomial growth 
– Landau symbols 
– Big-Θ as an equivalence relation 
– Little-o as a weak ordering 

 
 



Background 
 Suppose we have two algorithms, how can we tell which 

is better? 
 
 We could implement both algorithms, run them both 

– Expensive and error prone 
 
 Preferably, we should analyze them mathematically 

– Algorithm analysis 
 



Asymptotic Analysis 
 In general, we will always analyze algorithms with respect to one or 

more variables 
 
 We will begin with one variable: 

– The number of items n currently stored in an array or other data 
structure 

– The number of items expected to be stored in an array or other data 
structure 

– The dimensions of an n × n matrix 
 
 Examples with multiple variables: 

– Dealing with n objects stored in m memory locations 
– Multiplying a k × m and an m × n matrix 
– Dealing with sparse matrices of size n × n with m non-zero entries 

 



Maximum Value 
 For example, the time taken to find the 

largest object in an array of n random 
integers will take n operations 

 
  int find_max( int *array, int n ) { 
      int max = array[0]; 
 
      for ( int i = 1; i < n; ++i ) { 
          if ( array[i] > max ) { 
              max = array[i]; 
          } 
      } 
 
      return max; 
  } 



Linear and binary search 

 There are other algorithms which are significantly faster as 
the problem size increases 

 
 This plot shows maximum 

and average number of 
comparisons to find an entry 
in a sorted array of size n 
– Linear search 
– Binary search 

n 



Asymptotic Analysis 
 Given an algorithm: 

– We need to be able to describe these values 
mathematically 

– We need a systematic means of using the 
description of the algorithm together with the 
properties of an associated data structure 

– We need to do this in a machine-independent 
way 

 
 For this, we need Landau symbols and the 

associated asymptotic analysis 



Quadratic Growth 
 Consider the two functions 
         f(n) = n2 and g(n) = n2 – 3n + 2 
 Around n = 0, they look very different 



Quadratic Growth 

 Yet on the range n = [0, 1000], they are 
(relatively) indistinguishable: 



Quadratic Growth 
 The absolute difference is large, for example, 
  f(1000) = 1 000 000 
  g(1000) =   997 002 
 but the relative difference is very small 
 
 
 and this difference goes to zero as n → ∞  
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Polynomial Growth 
 To demonstrate with another example, 
  f(n) = n6   and    g(n) = n6 – 23n5+193n4 –729n3+1206n2 – 648n 
 Around n = 0, they are very different 



Polynomial Growth 
 Still, around n = 1000, the relative difference is 

less than 3% 



Polynomial Growth 
 The justification for both pairs of polynomials 

being similar is that, in both cases, they each 
had the same leading term: 
 n2 in the first case, n6 in the second 
 

 Suppose however, that the coefficients of the 
leading terms were different 
– In this case, both functions would exhibit the 

same rate of growth, however, one would always 
be proportionally larger 

 



Examples 
 We will now look at  example: 

– A comparison of selection sort and 
Merge sort. 

• public static void selectionSort(int[] arr) 
• { 
•     for (int i = 0; i < arr.length - 1; i++) 
•         for (int j = i + 1; j < arr.length; j++) 
•         { 
•             if (arr[j] < arr[i) 
•                 { 
•                      int temp = arr[i]; 
•                       arr[i] = arr[j]; 
•                       arr[j] = temp; 
•                } 
•     } 
• } 
 

MergeSort (Array[First..Last]) 
{ 
  If (Array contains only one element) 
      Return Array 
  else 
   { 
    Middle= ((Last + First)/2) rounded 
down to the nearest integer 
  MergeSort(Array(First..Middle))  
  MergeSort(Array(Middle+1..Last))  
ResultArray = Merge(LeftHalfArray, 
RightHalfArray)  
Return ResultArray 
    } 
  }    



Weak ordering 

 Consider the following definitions: 
– We will consider two functions to be equivalent, f ~ g, if 

 
    where 

 
– We will state that f < g     if 

 
 

 For functions we are interested in, these define a weak 
ordering 
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Weak ordering 

 Let f(n) and g(n) describe either the run-time of two 
algorithms 
– If f(n) ~ g(n), then it is always possible to improve the 

performance of one function over the other by purchasing 
a faster computer 

– If f(n) < g(n), then you can never purchase a computer fast 
enough so that the second function always runs in less 
time than the first 
 

 Note that for small values of n, it may be reasonable to use an 
algorithm that is asymptotically more expensive, but we will 
consider these on a one-by-one basis 



Weak ordering 

 In general, there are functions such that  
– If f(n) ~ g(n), then it is always possible to improve the 

performance of one function over the other by purchasing 
a faster computer 

– If f(n) < g(n), then you can never purchase a computer fast 
enough so that the second function always runs in less 
time than the first 
 

 Note that for small values of n, it may be reasonable to use an 
algorithm that is asymptotically more expensive, but we will 
consider these on a one-by-one basis 



Landau Symbols 

 
 A function f(n) = O(g(n)) if there exists N 

and c such that 
f(n) < c g(n) 

 whenever n > N 
– The function f(n) has a rate of growth no 

greater than that of g(n)  



Landau Symbols 
 Before we begin, however, we will make 

some assumptions: 
– Our functions will describe the time or memory 

required to solve a problem of size n 
– We conclude we are restricting ourselves to 

certain functions: 
• They are defined for n ≥ 0 
• They are strictly positive for all n 

– In fact, f(n) > c for some value c > 0 
– That is, any problem requires at least one instruction and 

byte 
• They are increasing (monotonic increasing) 



Landau Symbols 

 Another Landau symbol is Θ 
 
 A function f(n) = Θ(g(n)) if there exist 

positive N, c1, and c2 such that 
c1 g(n) < f(n) < c2 g(n) 

 whenever n > N 
– The function f(n) has a rate of growth equal to 

that of g(n)  



Landau Symbols 
 These definitions are often unnecessarily 

tedious 
                                   where   

  
 Note, however, that if f(n) and g(n) are 

polynomials of the same degree with positive 
leading coefficients: 
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Landau Symbols 
 Suppose that f(n) and g(n) satisfy 

 
 From the definition, this means given c > ε > 0 there 

 
 exists an N > 0 such that                          whenever n > N 
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Landau Symbols 
 However, the statement 

says that f(n) = Θ(g(n)) 
 
 Note that this only goes one way: 
 
     If                     where               , it follows that  
                       
         f(n) = Θ(g(n))   
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Landau Symbols 
 We have a similar definition for O: 

 
     If                     where                , it follows that  
                       
         f(n) = O(g(n)) 
 There are other possibilities we would like to describe: 
 
     If                    , we will say f(n) = o(g(n)) 

– The function f(n) has a rate of growth less than that of 
g(n), We would also like to describe the opposite cases: 

– The function f(n) has a rate of growth greater than that 
of g(n) 

– The function f(n) has a rate of growth greater than or 
equal to that of g(n) 
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Landau Symbols 
 We will at times use five possible descriptions 
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Landau Symbols 

For the functions we are interested in, it can 
be said that 

f(n) = O(g(n)) is equivalent to f(n) = Θ(g(n)) or 
f(n) = o(g(n)) 

 and 
f(n) = Ω(g(n)) is equivalent to f(n) = Θ(g(n)) or 

f(n) = ω(g(n)) 



Landau Symbols 
 Graphically, we can summarize these as follows: 

We say 
 
  if 



Landau Symbols 

 Some other observations we can make 
are: 
   f(n) = Θ(g(n)) ⇔ g(n) = Θ(f(n)) 
   f(n) = O(g(n)) ⇔ g(n) = Ω(f(n)) 
   f(n) = o(g(n))  ⇔ g(n) = ω(f(n)) 

 



Big-Θ as an Equivalence 
Relation 

 If we look at the first relationship, we notice that 
f(n) = Θ(g(n)) seems to describe an equivalence 
relation: 
 1.   f(n) = Θ(g(n)) if and only if g(n) = Θ(f(n))  
 2.   f(n) = Θ(f(n))  
 3.   If f(n) = Θ(g(n)) and g(n) = Θ(h(n)), it follows that 

f(n) = Θ(h(n)) 
 
 Consequently, we can group all functions into 

equivalence classes, where all functions within 
one class are big-theta Θ of each other 

 



Big-Θ as an Equivalence 
Relation 

 For example, all of 
n2            100000 n2 – 4 n + 19             n2 + 1000000 
 323 n2 – 4 n ln(n) + 43 n + 10                    42n2 + 32 

n2 + 61 n ln2(n) + 7n + 14 ln3(n) + ln(n) 
 are big-Θ of each other 
 
E.g., 42n2 + 32 = Θ( 323 n2 – 4 n ln(n) + 43 n + 10 ) 



Big-Θ as an Equivalence 
Relation 

 The most common classes are given names: 
   Θ(1)   constant 
   Θ(ln(n))  logarithmic 
   Θ(n)   linear 
   Θ(n ln(n))  “n log n” 
   Θ(n2)  quadratic 
   Θ(n3)  cubic 
   2n, en, 4n, ... exponential 



Logarithms and Exponentials 
 Recall that all logarithms are scalar multiples of each 

other 
– Therefore logb(n)= Θ(ln(n)) for any base b 

 
 Alternatively, there is no single equivalence class for 

exponential functions: 
– If 1 < a < b,  

 
– Therefore an = o(bn)  

 
 However, we will see that it is almost universally 

undesirable to have an exponentially growing function! 
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Logarithms and Exponentials 

 Plotting 2n, en, and 4n on the range [1, 10] 
already shows how significantly different 
the functions grow 

 
 Note: 

210 =         1024 
e10 ≈      22 026 
410 = 1 048 576 



Little-o as a Weak Ordering 
 We can show that, for example 
  ln( n ) = o( np ) 
 for any p > 0 

 
 Proof:  Using l’Hôpital’s rule, we have 

 
 

  
 Conversely, 1 = o(ln( n )) 
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Little-o as a Weak Ordering 
 Other observations: 

– If p and q are real positive numbers where p < q, it 
follows that 

                        np = o(nq) 
 

– For example, matrix-matrix multiplication is Θ(n3) 
but a refined algorithm is Θ(nlg(7)) where lg(7) ≈  
2.81 

 
– Also, np = o(ln(n)np), but ln(n)np = o(nq) 

• np has a slower rate of growth than ln(n)np, but 
• ln(n)np has a slower rate of growth than nq for p < q 



Little-o as a Weak Ordering 
 If we restrict ourselves to functions f(n) 

which are Θ(np) and Θ(ln(n)np), we note: 
– It is never true that f(n) = o(f(n)) 
– If f(n) ≠ Θ(g(n)), it follows that either  
   f(n) = o(g(n)) or g(n) = o(f(n)) 
– If f(n) = o(g(n)) and g(n) = o(h(n)), it follows that 

f(n) = o(h(n))  
 

 This defines a weak ordering! 
 

 
 



Little-o as a Weak Ordering 

 Graphically, we can shown this 
relationship by marking these against the 
real line 



Algorithms Analysis 
 We will use Landau symbols to describe the complexity of 

algorithms 
– E.g., adding a list of n doubles will be said to be a Θ(n) algorithm 

 
 An algorithm is said to have polynomial time complexity if its 

run-time may be described by O(nd) for some fixed d ≥ 0 
– We will consider such algorithms to be efficient 

 
 Problems that have no known polynomial-time algorithms are 

said to be intractable 
– Traveling salesman problem:  find the shortest path that visits n 

cities 
– Best run time:  Θ(n2 2n) 



Algorithm Analysis 
 In general, you don’t want to implement exponential-time or 

exponential-memory algorithms 
– Warning:  don’t call a quadratic curve “exponential”, 

either...please 
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