
Algorithms and Data
Structures

Lec02
Asymptotic Analysis
Dr. Mohammad Ahmad

 Asymptotic Analysis

Outline:
we will look at:

– Justification for analysis
– Quadratic and polynomial growth
– Landau symbols
– Big-Θ as an equivalence relation
– Little-o as a weak ordering

Background
 Suppose we have two algorithms, how can we tell which

is better?

 We could implement both algorithms, run them both

– Expensive and error prone

 Preferably, we should analyze them mathematically

– Algorithm analysis

Asymptotic Analysis
 In general, we will always analyze algorithms with respect to one or

more variables

 We will begin with one variable:

– The number of items n currently stored in an array or other data
structure

– The number of items expected to be stored in an array or other data
structure

– The dimensions of an n × n matrix

 Examples with multiple variables:

– Dealing with n objects stored in m memory locations
– Multiplying a k × m and an m × n matrix
– Dealing with sparse matrices of size n × n with m non-zero entries

Maximum Value
 For example, the time taken to find the

largest object in an array of n random
integers will take n operations

 int find_max(int *array, int n) {
 int max = array[0];

 for (int i = 1; i < n; ++i) {
 if (array[i] > max) {
 max = array[i];
 }
 }

 return max;
 }

Linear and binary search

 There are other algorithms which are significantly faster as
the problem size increases

 This plot shows maximum

and average number of
comparisons to find an entry
in a sorted array of size n
– Linear search
– Binary search

n

Asymptotic Analysis
 Given an algorithm:

– We need to be able to describe these values
mathematically

– We need a systematic means of using the
description of the algorithm together with the
properties of an associated data structure

– We need to do this in a machine-independent
way

 For this, we need Landau symbols and the

associated asymptotic analysis

Quadratic Growth
 Consider the two functions
 f(n) = n2 and g(n) = n2 – 3n + 2
 Around n = 0, they look very different

Quadratic Growth

 Yet on the range n = [0, 1000], they are
(relatively) indistinguishable:

Quadratic Growth
 The absolute difference is large, for example,
 f(1000) = 1 000 000
 g(1000) = 997 002
 but the relative difference is very small

 and this difference goes to zero as n → ∞

0.3%0.002998
)1000f(

)1000g()1000f(
<=

−

Polynomial Growth
 To demonstrate with another example,
 f(n) = n6 and g(n) = n6 – 23n5+193n4 –729n3+1206n2 – 648n
 Around n = 0, they are very different

Polynomial Growth
 Still, around n = 1000, the relative difference is

less than 3%

Polynomial Growth
 The justification for both pairs of polynomials

being similar is that, in both cases, they each
had the same leading term:
 n2 in the first case, n6 in the second

 Suppose however, that the coefficients of the
leading terms were different
– In this case, both functions would exhibit the

same rate of growth, however, one would always
be proportionally larger

Examples
 We will now look at example:

– A comparison of selection sort and
Merge sort.

• public static void selectionSort(int[] arr)
• {
• for (int i = 0; i < arr.length - 1; i++)
• for (int j = i + 1; j < arr.length; j++)
• {
• if (arr[j] < arr[i)
• {
• int temp = arr[i];
• arr[i] = arr[j];
• arr[j] = temp;
• }
• }
• }

MergeSort (Array[First..Last])
{
 If (Array contains only one element)
 Return Array
 else
 {
 Middle= ((Last + First)/2) rounded
down to the nearest integer
 MergeSort(Array(First..Middle))
 MergeSort(Array(Middle+1..Last))
ResultArray = Merge(LeftHalfArray,
RightHalfArray)
Return ResultArray
 }
 }

Weak ordering

 Consider the following definitions:
– We will consider two functions to be equivalent, f ~ g, if

 where

– We will state that f < g if

 For functions we are interested in, these define a weak
ordering

∞<< c0
()lim
()n

f n c
g n→∞

=

()lim 0
()n

f n
g n→∞

=

Weak ordering

 Let f(n) and g(n) describe either the run-time of two
algorithms
– If f(n) ~ g(n), then it is always possible to improve the

performance of one function over the other by purchasing
a faster computer

– If f(n) < g(n), then you can never purchase a computer fast
enough so that the second function always runs in less
time than the first

 Note that for small values of n, it may be reasonable to use an
algorithm that is asymptotically more expensive, but we will
consider these on a one-by-one basis

Weak ordering

 In general, there are functions such that
– If f(n) ~ g(n), then it is always possible to improve the

performance of one function over the other by purchasing
a faster computer

– If f(n) < g(n), then you can never purchase a computer fast
enough so that the second function always runs in less
time than the first

 Note that for small values of n, it may be reasonable to use an
algorithm that is asymptotically more expensive, but we will
consider these on a one-by-one basis

Landau Symbols

 A function f(n) = O(g(n)) if there exists N

and c such that
f(n) < c g(n)

 whenever n > N
– The function f(n) has a rate of growth no

greater than that of g(n)

Landau Symbols
 Before we begin, however, we will make

some assumptions:
– Our functions will describe the time or memory

required to solve a problem of size n
– We conclude we are restricting ourselves to

certain functions:
• They are defined for n ≥ 0
• They are strictly positive for all n

– In fact, f(n) > c for some value c > 0
– That is, any problem requires at least one instruction and

byte
• They are increasing (monotonic increasing)

Landau Symbols

 Another Landau symbol is Θ

 A function f(n) = Θ(g(n)) if there exist

positive N, c1, and c2 such that
c1 g(n) < f(n) < c2 g(n)

 whenever n > N
– The function f(n) has a rate of growth equal to

that of g(n)

Landau Symbols
 These definitions are often unnecessarily

tedious
 where

 Note, however, that if f(n) and g(n) are

polynomials of the same degree with positive
leading coefficients:

c
n
n

n
=

∞→)g(
)f(lim ∞<< c0

Landau Symbols
 Suppose that f(n) and g(n) satisfy

 From the definition, this means given c > ε > 0 there

 exists an N > 0 such that whenever n > N

 That is,

ε<− c
n
n

)g(
)f(

c
n
n

n
=

∞→)g(
)f(lim

εε +<<− c
n
nc

)g(
)f(

() ()εε +<<− cnncn)g()f()g(

Landau Symbols
 However, the statement

says that f(n) = Θ(g(n))

 Note that this only goes one way:

 If where , it follows that

 f(n) = Θ(g(n))

() ()εε +<<− cnncn)g()f()g(

c
n
n

n
=

∞→)g(
)f(lim ∞<< c0

Landau Symbols
 We have a similar definition for O:

 If where , it follows that

 f(n) = O(g(n))
 There are other possibilities we would like to describe:

 If , we will say f(n) = o(g(n))

– The function f(n) has a rate of growth less than that of
g(n), We would also like to describe the opposite cases:

– The function f(n) has a rate of growth greater than that
of g(n)

– The function f(n) has a rate of growth greater than or
equal to that of g(n)

c
n
n

n
=

∞→)g(
)f(lim ∞<≤ c0

0
)g(
)f(lim =

∞→ n
n

n

))(g()f(nn Θ=

Landau Symbols
 We will at times use five possible descriptions

∞=
∞→)g(

)f(lim
n
n

n

))(g()f(nn o=

))(g()f(nn ω=

0
)g(
)f(lim =

∞→ n
n

n

∞<<
∞→)g(

)f(lim0
n
n

n

0
)g(
)f(lim >

∞→ n
n

n

))(g()f(nn O=

))(g()f(nn Ω=

∞<
∞→)g(

)f(lim
n
n

n

Landau Symbols

For the functions we are interested in, it can
be said that

f(n) = O(g(n)) is equivalent to f(n) = Θ(g(n)) or
f(n) = o(g(n))

 and
f(n) = Ω(g(n)) is equivalent to f(n) = Θ(g(n)) or

f(n) = ω(g(n))

Landau Symbols
 Graphically, we can summarize these as follows:

We say

 if

Landau Symbols

 Some other observations we can make
are:
 f(n) = Θ(g(n)) ⇔ g(n) = Θ(f(n))
 f(n) = O(g(n)) ⇔ g(n) = Ω(f(n))
 f(n) = o(g(n)) ⇔ g(n) = ω(f(n))

Big-Θ as an Equivalence
Relation

 If we look at the first relationship, we notice that
f(n) = Θ(g(n)) seems to describe an equivalence
relation:
 1. f(n) = Θ(g(n)) if and only if g(n) = Θ(f(n))
 2. f(n) = Θ(f(n))
 3. If f(n) = Θ(g(n)) and g(n) = Θ(h(n)), it follows that

f(n) = Θ(h(n))

 Consequently, we can group all functions into

equivalence classes, where all functions within
one class are big-theta Θ of each other

Big-Θ as an Equivalence
Relation

 For example, all of
n2 100000 n2 – 4 n + 19 n2 + 1000000
 323 n2 – 4 n ln(n) + 43 n + 10 42n2 + 32

n2 + 61 n ln2(n) + 7n + 14 ln3(n) + ln(n)
 are big-Θ of each other

E.g., 42n2 + 32 = Θ(323 n2 – 4 n ln(n) + 43 n + 10)

Big-Θ as an Equivalence
Relation

 The most common classes are given names:
 Θ(1) constant
 Θ(ln(n)) logarithmic
 Θ(n) linear
 Θ(n ln(n)) “n log n”
 Θ(n2) quadratic
 Θ(n3) cubic
 2n, en, 4n, ... exponential

Logarithms and Exponentials
 Recall that all logarithms are scalar multiples of each

other
– Therefore logb(n)= Θ(ln(n)) for any base b

 Alternatively, there is no single equivalence class for

exponential functions:
– If 1 < a < b,

– Therefore an = o(bn)

 However, we will see that it is almost universally

undesirable to have an exponentially growing function!

0limlim =

=

∞→∞→

n

nn

n

n b
a

b
a

Logarithms and Exponentials

 Plotting 2n, en, and 4n on the range [1, 10]
already shows how significantly different
the functions grow

 Note:

210 = 1024
e10 ≈ 22 026
410 = 1 048 576

Little-o as a Weak Ordering
 We can show that, for example
 ln(n) = o(np)
 for any p > 0

 Proof: Using l’Hôpital’s rule, we have

 Conversely, 1 = o(ln(n))

0lim11lim/1lim)ln(lim
1

==== −

∞→∞→−∞→∞→

p

npnpnpn
n

ppnpn
n

n
n

Little-o as a Weak Ordering
 Other observations:

– If p and q are real positive numbers where p < q, it
follows that

 np = o(nq)

– For example, matrix-matrix multiplication is Θ(n3)
but a refined algorithm is Θ(nlg(7)) where lg(7) ≈
2.81

– Also, np = o(ln(n)np), but ln(n)np = o(nq)

• np has a slower rate of growth than ln(n)np, but
• ln(n)np has a slower rate of growth than nq for p < q

Little-o as a Weak Ordering
 If we restrict ourselves to functions f(n)

which are Θ(np) and Θ(ln(n)np), we note:
– It is never true that f(n) = o(f(n))
– If f(n) ≠ Θ(g(n)), it follows that either
 f(n) = o(g(n)) or g(n) = o(f(n))
– If f(n) = o(g(n)) and g(n) = o(h(n)), it follows that

f(n) = o(h(n))

 This defines a weak ordering!

Little-o as a Weak Ordering

 Graphically, we can shown this
relationship by marking these against the
real line

Algorithms Analysis
 We will use Landau symbols to describe the complexity of

algorithms
– E.g., adding a list of n doubles will be said to be a Θ(n) algorithm

 An algorithm is said to have polynomial time complexity if its

run-time may be described by O(nd) for some fixed d ≥ 0
– We will consider such algorithms to be efficient

 Problems that have no known polynomial-time algorithms are

said to be intractable
– Traveling salesman problem: find the shortest path that visits n

cities
– Best run time: Θ(n2 2n)

Algorithm Analysis
 In general, you don’t want to implement exponential-time or

exponential-memory algorithms
– Warning: don’t call a quadratic curve “exponential”,

either...please

	Algorithms and Data Structures
	 Asymptotic Analysis
	Background
	Asymptotic Analysis
	Maximum Value
	Linear and binary search
	Asymptotic Analysis
	Quadratic Growth
	Quadratic Growth
	Quadratic Growth
	Polynomial Growth
	Polynomial Growth
	Polynomial Growth
	Examples
	Weak ordering
	Weak ordering
	Weak ordering
	Landau Symbols
	Landau Symbols
	Landau Symbols
	Landau Symbols
	Landau Symbols
	Landau Symbols
	Landau Symbols
	Landau Symbols
	Landau Symbols
	Landau Symbols
	Landau Symbols
	Big-Q as an Equivalence Relation
	Big-Q as an Equivalence Relation
	Big-Q as an Equivalence Relation
	Logarithms and Exponentials
	Logarithms and Exponentials
	Little-o as a Weak Ordering
	Little-o as a Weak Ordering
	Little-o as a Weak Ordering
	Little-o as a Weak Ordering
	Algorithms Analysis
	Algorithm Analysis

